Advanced Whey (500g)

Advanced Whey (500g)

Advanced Whey (500g)

Immune-Boosting Whey Protein

  • 28% more lactoferrin than other whey proteins
  • Naturally balanced amino acid profile
  • Available in 2 delicious flavours

Formula changes for Vanilla

DISCUSSION: Advanced Whey™ by AOR is no regular whey protein. It combines whey protein isolate with a high-protein concentrate (76% protein), which offers benefits not associated with whey protein isolate alone. A quality whey protein supplement like Advanced Whey consists of about 20% alpha-lactalbumin. Advanced Whey is also enriched in lactoferrin, containing up to 28% more lactoferrin than other high-end whey proteins currently available. Lactoferrin levels increase naturally after intense bouts of physical activity. This response enhances the immune system which can be weakened by rigorous exercise. Advanced Whey uses cross-flow microfiltration (not ion-exchange) to maximize protein content and minimize unnecessary carbohydrate and saturated fat while retaining all bioactive peptide subfractions. The low temperature, filtration-based processing techniques used in these materials allow absolute minimal protein denaturation.

NPN (what's this?) Product Code Size Per Capsule Vegetarian
80028235 AOR04130 1 Kg Powder Vanilla
80028235 AOR04128 1 Kg Powder Unflavoured
Supplement Facts
Serving Size:   1 Rounded Scoop (~27g) Amount Per Serving
Energy 100 Calories/419 KJ
Calories from fat 5.2 Calories/21.8 KJ
Protein 22 g*
Alpha-lactalbumin 4.3 g
Lactoferrin 310 mg
Glycomacropeptides 3.3 g
Carbohydrates 1.4 g
Sugars 1.4 g
Fiber 0.0 g
Fat 0.6 g
Saturated Fat 0.3 g
Calcium 146 mg
Sodium 29 mg
Calories Per Gram:     Fat 9    Carbohydrate 4    Protein 4 * from 15.59 g whey protein isolate (85.5% protein) and 11.25 g concentrate (75.6% protein). Ingredients: Cross-flow microfiltered whey protein isolate, whey protein concentrate, lactoferrin isolate, soy lecithin.Vanilla whey also contains: natural vanilla flavor, vanillin, xanthan gum, fructose, silicon dioxide, tricalcium phosphate.
Total Amino Acid Profile 
Per 27g servings Amount Per Serving
Total Essential Amino Acids 10.64 g
Isoleucine (BCAA) 1.34 g
Leucine (BCAA) 2.45 g
Valine (BCAA) 1.25 g
Phenylalanine 0.72 g
Methionine 0.48 g
Lysine 2.04 g
Tryptophan 0.42 g
Threonine 1.47 g
Histidine 0.45 g
Total Non Essential Amino Acids  11.60 g
Alanine  1.07 g
Arginine  0.54 g
Aspartic Acid  2.28 g
Cysteine  0.57 g
Glutamic Acid 3.50 g
Glycine 0.41g
Proline 1.42 g
Serine 1.08 g
Tyrosine 0.72 g

AOR Guarantees: Some ingredients are processed in a facility that also processes wheat, corn, nuts, eggs, fish and shellfish. While none of these are added to this product, traces may be present. Contains no peanuts, sulphites or mustard.

Adult Dosage: Mix 1 scoop with your favorite beverage. Stir with a spoon for 30 seconds. No blender required. Take a few hours before or after taking other medications.

Cautions: Consult a health care practitioner prior to use if you have liver or kidney disease, if you have been instructed to follow a low protein diet, or for use beyond 6 months. May cause mild gastrointestinal disturbances. This product contains milk products. Do not use if you have a milk allergy.

Pregnancy/Nursing: Consult a health care practitioner prior to use

Bovine Milk

Main Indications:

  •  Immune function
  •  Nutritional support
  •  Normal cell growth
  •  Anti-inflammatory
  •  Antioxidant
  • 100% Natural Grade A
  • Free of Pesticides
  • Negative for Antibiotics
  • Melamine Free

Related Products


The information and product descriptions appearing on this website are for information purposes only, and are not intended to provide or replace medical advice to individuals from a qualified health care professional. Consult with your physician if you have any health concerns, and before initiating any new diet, exercise, supplement, or other lifestyle changes.

Read More ...


Background Info

The use and popularity of whey protein has grown to such an extent since the mid-1990′s that it is now found in everything from general meal-replacements to infant formulas for newborns. No longer relegated to the exclusive domain of the blender, whey protein is now almost effortlessly added to cereals, yogurts, and even breads and pastries. Such widespread applications speak volumes about the unlocked potential of whey protein. Scientists speculated – correctly as it turned out – that any macronutrient that has earned such widespread acceptance has more secrets to yield. Companies such as AORTM have taken the initiative to unlock these secrets, and Advanced WheyTM represents the fruition of those efforts.

Read More



Iron Transporter & Cholesterol Protector
Lactoferrin appears to be the transporter of iron in breast-milk, thus serving as the source of essential amounts of this mineral to nursing infants. Many clinical studies have shown that lactoferrin can protect against infection in neonatal units. Lactoferrin’s effects on cholesterol levels seem to be based on its ability to reduce the oxidation of LDL cholesterol, an important function considering how oxidized LDL cholesterol can damage artery walls and set the stage for mineral and fat deposits which lead to blockages.

Read More

Market Trends

Whey protein is usually used as a muscle-building supplement for gym-goers or athletes, as a meal replacement in weight-loss regimes, or as an additional protein source for vegetarians.

Read More

AOR Advantage

Although AOR’s Advanced Whey can be used for all of the great things it’s known for, it has a different goal in mind. Designed to be as natural and healthy as possible, Advanced Whey uses cross-flow microfiltration to minimize protein denaturation, contains no sweeteners, and includes minimal added flow agents.

AOR’s whey uses both whey protein isolate and a high-protein (75%) concentrate. Both yield a high percentage of protein while the concentrate contains healthy immune-enhancing factors not found in isolate.

The widespread health applications of whey protein are heavily dependent on its alpha-lactalbumin, lactoferrin, and glycomacropeptide content. Ensuring good amounts of these fractions is costly, which may largely explain why their benefits are not emphasized in most whey protein supplements.

A quality whey protein supplement such as Advanced WheyTM from AOR should consist of about 20% alpha-lactalbumin.

Advanced Whey from AOR has been formulated to contain up to 28% more lactoferrin than other high-end whey proteins currently available.


Lin YP et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2and H5N1 human isolates. PNAS. 2000 Aug; 15; Vol. 97; No. 17; 9654-9658

Markus CR, Olivier B, Panhuysen GEM, Gugten J van der, Alles MS, Tuiten A, Westenberg HGM, Fekkes D, Koppeschaar, HF & Haan EEHF de (2000) The bovine protein alpha-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress. American Journal of Clinical Nutrition 71 (6):1536-1544.

Read More


Leave a Reply

You must be logged in to post a comment.


Q: Can someone who is lactose intolerant or allergic to dairy take Advanced Whey?

A: This product contains both casein and lactose and should therefore probably be avoided by those with severe milk allergies and severe lactose intolerance.

Q: Is whey protein isolate better than concentrate? If whey protein isolate is a better source of protein, why does AOR’s whey contain concentrate as well?

A: Whey protein isolate contains about 92% protein whereas AOR’s whey concentrate provides about 82% protein (whey concentrate protein contents can vary). Although isolate contains a higher amount of protein, additional immunoglobulins and alpha-lactalbumin present in higher quantities in the concentrate enhance immunity and also contribute to the positive functionality of the whey protein. We use both because there is a more balanced offering of additional immune factors that are missing in the isolate.

Q: Were the cows that the whey protein comes from given growth hormones / bST / bovine somatotropin?

A: Milk from cows given supplemental bST contains no more bST than milk from cows not given the supplement. The level of bST in milk stays the same. Because of the industry practice of “pooling” milk from many farms, it would be virtually impossible for any dairy processor or distributor to state accurately and consistently that their products come from herds that have not received bST.
Any or all milk and its industrial derivatives (whey, cheese, yogurt, fat, cream, fraction…etc) sold in the USA or Canada for consumers is rountinely subjected to hormone, antibiotic, coliform, bacterial and nutritive content testing. In the Pasteurized Milk Ordinance 2007 revision, the FDA outlines what is tested and how, and section 6 shows that drugs and pesticides residues are also screened for and any positive result is a welcome sign for a dreadful inspection. So based on this only AOR’s Whey, being from the USA, can be guaranteed free of antibiotics or hormones (both included in the drugs list).

Q: What is the difference between Advanced Whey and Lactoferrin Ultra?

A: Lactoferrin Ultra contains far more Lactoferrin. 4.8g per serving size vs 400 mg per serving size for Advanced Whey protein.

Q: What is the difference between Advanced Whey and Immune Ultra?

A: Lactoferrin Ultra contains far more Lactoferrin. 4.8g per serving size vs 400 mg per serving size for Advanced Whey protein.


The clinical efficacy of a bovine lactoferrin/whey protein Ig-rich fraction (Lf/IgF) for the common cold: a double blind randomized study.
Complement Ther Med. 2013 Jun;21(3):164-71.
Vitetta L, Coulson S, Beck SL, Gramotnev H, Du S, Lewis S.

OBJECTIVE: The aim of the study was to determine if a bovine lactoferrin/whey protein Ig-rich fraction (Lf/IgF) combination was effective in reducing the number of colds and in turn improving symptom recovery in a cohort of males and females that reported frequently contracting a cold.
DESIGN: A double blind randomized placebo-controlled clinical trial.
SETTING: One-hundred and twenty-six participants matched by age, BMI, dietary and physical parameters with self-reported frequent upper respiratory tract symptoms and infections were randomly assigned to receive 600 mg of Lf/IgF or a placebo daily for 90 days.
MAIN OUTCOME MEASURES AND RESULTS: A total of 90 participants (47 receiving the active and 43 placebo) completed the 90 day trial and 15 completed 45 days participation (6 in the active and 9 in the placebo group). The total number of colds recorded over the study period was 48 for the treatment group versus 112 for the placebo group (p < 0.001). The significant trend was retained when the data was corrected for medications returned (p < 0.001) and for guessing treatment allocations (p < 0.001). Non-parametric analysis demonstrated that the total number of cold-associated symptoms reported by participants that received Lf/IgF was significantly less than those in the placebo group (p < 0.05). Also, total days sick with a cold and cold severity were reduced over the clinical trial period for Lf/IgF over placebo, but the trend was not significant.
CONCLUSIONS: These findings demonstrate that the Lf/IgF combination significantly decreased the incidence of colds and the cumulative number of cold-related symptoms over placebo. This therapeutic combination may be indicated for the prevention of colds and its most common symptoms in the general population when administered as a preventative supplement.


Nutrient supplementation post ambulation in persons with incomplete spinal cord injuries: a randomized, double-blinded, placebo-controlled case series.
Arch Phys Med Rehabil. 2007 Feb;88(2):228-33.
Nash MS, Meltzer NM, Martins SC, Burns PA, Lindley SD, Field-Fote EC.

OBJECTIVE: To examine effects of protein-carbohydrate intake on ambulation performance in persons with incomplete spinal cord injury (SCI).
DESIGN: Double-blinded treatment with washout and placebo crossover.
SETTING: Academic medical center.
PARTICIPANTS: Three subjects aged 34 to 43 years with incomplete SCI at C5-T4.
INTERVENTIONS: Subjects walked to fatigue on 5 consecutive days. On fatigue, participants consumed 48g of vanilla-flavored whey and 1g/kg of body weight of carbohydrate (CH(2)O). Weekend rest followed, and the process was repeated. A 2-week washout was interposed and the process repeated using 48g of vanilla-flavored soy.
MAIN OUTCOME MEASURES: Oxygen consumed (Vo(2); in L/min), carbon dioxide evolved (Vco(2)), respiratory exchange ratio (RER: Vco(2)/Vo(2)), time (in minutes), and distance walked (in meters) were recorded. Caloric expenditure was computed as Vo(2) by time by 21kJ/L (5kcal/L) of oxygen consumed. Data were averaged across the final 2 ambulation sessions for each testing condition.
RESULTS: Despite slow ambulation velocities (range, .11-.34m/s), RERs near or above unity reflected reliance on CH(2)O fuel substrates. Average ambulation time to fatigue was 17.8% longer; distance walked 37.9% longer, and energy expenditure 12.2% greater with the whey and CH(2)O supplement than with the soy drink.
CONCLUSIONS: Whey and CH(2)O ingestion after fatiguing ambulation enhanced ensuing ambulation by increasing ambulation distance, time, and caloric expenditure in persons with incomplete SCI.

Bovine whey protein concentrate supplementation modulates maturation of immune system in suckling rats.
Br J Nutr. 2007 Oct;98 Suppl 1:S80-4.
Pérez-Cano FJ, Marín-Gallén S, Castell M, Rodríguez-Palmero M, Rivero M, Franch A, Castellote C.

During neonatal life, challenges from breast milk and microbial flora promote immune system maturation. Immunonutrition in these stages may become an important way to increase natural defence systems. The aim of this study was to determine the effect of a daily bovine milk whey protein concentrate (WPC) supplement on the intestinal and systemic immune systems in suckling rats. The composition of intraepithelial and lamina propria lymphocytes (IEL and LPL) was analysed by flow cytometry. Systemic and intestinal humoral immune responses were determined by sera Ig levels and Ig-secreting cell quantification by ELISA and ELISPOT, respectively. From birth, suckling Wistar rats were supplemented with WPC or standard infant formula (SIF). The WPC group showed the same proportion of most of the main mucosal cell subsets as the reference animals. However, in the first days of life WPC enhanced the innate immunity by increasing the NK cell proportion in both epithelial and lamina propria (LP) compartments. A rise in intestinal CD8alphaalpha+ IEL was also induced by WPC supplementation. A time-course of sera Ig levels and spontaneous IgA, IgM and IgG production by LPL and mononuclear cells from blood and spleen, in the WPC group, exhibited a similar pattern to those pups fed only by dam’s milk. In summary, the present results show the effects of WPC on enhancing mucosal innate immunity during early life.

Effect of whey protein to modulate immune response in children with atopic asthma.
Int J Food Sci Nutr. 2006 May-Jun;57(3):204-11.
Lothian JB, Grey V, Lands LC.

Background Levels of glutathione (GSH) in antigen-presenting cells promote a T-helper type 2 (Th2) cytokine response in mice. We have previously demonstrated that we can increase intracellular GSH levels in healthy young adults using a whey-based oral supplement (HMS90trade mark). We hypothesized that such supplementation in children with atopic asthma, a Th2 cytokine disease, would improve lung function and decrease atopy.Methods Eleven children (six females, five males; mean+/-standard deviation age, 12.6+/-3.6 years; baseline forced expired volume in 1 sec (FEV1), 82.4+/-15.4%predicted), underwent spirometry, methacholine provocation testing, and blood analysis for serum IgE and lymphocyte GSH before and after 1 month of supplementation (10 g twice daily).Results Initially the IgE was 1689+/-1596 microg/l (normal range < /=240 microg/l) and lymphocyte GSH was 1.75+/-0.48 microM (normal range 1.55+/-0.33 microM). IgE significantly decreased to 1379+/-1329 microg/l (P < 0.05) following supplementation. Although no significant changes in lymphocyte GSH or FEV1 were found for the group as a whole, the two patients with significant increases in lymphocyte GSH concentrations were the only two to demonstrate reductions in methacholine provocation doses (provocative concentration causing a 20% fall in FEV1).Conclusions These results suggest a modest impact of whey protein supplementation on the cytokine response in atopic asthma. Supplementation for longer periods, or with more potent whey-based supplements, currently under development, may prove more beneficial.

Whey protein rich in -lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects.
American Journal of Clinical Nutrition. June 2002;75(6):1051-1056.
Markus CR, Olivier B and de Haan EHF.

BACKGROUND: Cognitive performance often declines under chronic stress exposure. The negative effect of chronic stress on performance may be mediated by reduced brain serotonin function. The uptake of the serotonin precursor tryptophan into the brain depends on nutrients that influence the availability of tryptophan by changing the ratio of plasma tryptophan to the sum of the other large neutral amino acids (Trp-LNAA ratio). In addition, a diet-induced increase in tryptophan may increase brain serotonergic activity levels and improve cognitive performance, particularly in high stress-vulnerable subjects.
OBJECTIVE: We tested whether -lactalbumin, a whey protein with a high tryptophan content, would increase the plasma Trp-LNAA ratio and improve cognitive performance in high stress- vulnerable subjects.
DESIGN: Twenty-three high stress-vulnerable subjects and 29 low stress-vulnerable subjects participated in a double-blind, placebo-controlled, crossover study. All subjects conducted a memory-scanning task after the intake of a diet enriched with either -lactalbumin (-lactalbumin diet) or sodium caseinate (control diet). Blood samples were taken to measure the effect of dietary manipulation on the plasma Trp-LNAA ratio.
RESULTS: A significantly greater increase in the plasma Trp-LNAA ratio after consumption of the -lactalbumin diet than after the control diet (P = 0.0001) was observed; memory scanning improved significantly only in the high stress-vulnerable subjects (P = 0.019).
CONCLUSION: Because an increase in the plasma Trp-LNAA ratio is considered to be an indirect indication of increased brain serotonin function, the results suggest that dietary protein rich in -lactalbumin improves cognitive performance in stress-vulnerable subjects via increased brain tryptophan and serotonin activities.