Mag-K-Taurine

Mag-K-Taurine

Mag-K-Taurine

Electrolytes for Nerve & Heart Function

  • Maintains the activity of nerves and muscles
  • Protects the heart from cellular damage
  • Provides a correct balance of magnesium, potassium and taurine

View Infosheet

Share |

Shop Online

DISCUSSION: Taurine helps support cardiovascular function. Magnesium and potassium are minerals that are factors in the maintenance of good health.

NPN (what's this?)Product CodeSizePer CapsuleVegetarian
80027161 AOR0424690 Vegi-Caps500 mgVegetarian
Supplement Facts
Serving Size: 1 Capsule                                    
Magnesium (citrate) 100 mg
Potassium (chloride) 25 mg
Taurine 375 mg
 Non-medicinal ingredients: silicon dioxide. Capsule: hypromellose.

AOR Guarantees: that no ingredients not listed on the label have been added to the product. Contains no wheat, gluten, corn, nuts, peanuts, sesame seeds, sulphites, mustard, dairy, soy, eggs, fish, shellfish or any animal byproduct.

Adult Dosage: Take 1 capsule four times daily with/without food, or as directed by a qualified health care practitioner.

Cautions: None known

Pregnancy/Nursing: Consult a health care practitioner

Source:
Pharmaceutical synthesis

Main Indications:

  • Cardiovascular health
  • Brain function

Related Products

Disclaimer

The information and product descriptions appearing on this website are for information purposes only, and are not intended to provide or replace medical advice to individuals from a qualified health care professional. Consult with your physician if you have any health concerns, and before initiating any new diet, exercise, supplement, or other lifestyle changes.

Read More ...

Research

Background Information

Magnesium, Potassium, and Taurine Electrolytes
Electrolytes are conductors of electricity, but they are better summarized as substances that dissociate in solution to form ions. Electrolytes, such as magnesium and potassium, have many major functions, including:

1) Impulse transmission activity – electrolytes maintain activity of nerves and muscles.
2) Help regulate water levels in the body. Shifts of fluids are controlled by electrolytes.
3) Help regulate acid-base balance.

Read More

Research

Arrhythmias
In 1994, a milestone from the Framingham Heart Study was published, linking reduced potassium and magnesium levels to premature ventricular contractions, a form of arrhythmia that can be quite lethal if not controlled properly. The Framingham Heart Study is a giant on-going cohort study that has followed the heart health of thousands of subjects since 1948 in Framingham, Massachusetts.

Read More

Market Trends

Most electrolyte supplements are taken in the form of energy drinks, which of course are full of sugar.

Many people supplement with magnesium only without considering the balance that magnesium strikes with potassium and taurine for nerve, muscle and heart health.

AOR Advantage

AOR’s Mag-K-Taurine is an electrolyte formula free of sugars that fill most electrolyte supplements. It provides an important balance of magnesium and potassium for good nerve and muscle contractility along with taurine for maintained heart function.

References

Abebe W, Mozaffari MS. Role of taurine in the vasculature: an overview of experimental and human studies. Am J Cardiovasc Dis. 2011;1(3):293-311

Manz M, Susilo R. [Therapy of cardiac arrhythmias. Clinical significance of potassium- and magnesium aspartate in arrhythmias]. [Article in German] Fortschr Med Orig. 2002;120(1):11-5. 

Read More

Reviews

Comments are closed.

Abstracts

Role of taurine in the vasculature: an overview of experimental and human studies.
Am J Cardiovasc Dis. 2011;1(3):293-311
Abebe W, Mozaffari MS.

Taurine is a sulfur-containing amino acid-like endogenous compound found in substantial amounts in mammalian tissues. It exerts a diverse array of biological effects, including cardiovascular regulation, antioxidation, modulation of ion transport, membrane stabilization, osmoregulation, modulation of neurotransmission, bile acid conjugation, hypolipidemia, antiplatelet activity and modulation of fetal development. This brief review summarizes the role of taurine in the vasculature and modulation of blood pressure, based on experimental and human studies. Oral supplementation of taurine induces antihypertensive effects in various animal models of hypertension. These effects of taurine have been shown to be both centrally and peripherally mediated. Consistent with this, taurine produces endothelium-dependent and independent relaxant effects in isolated vascular tissue preparations. Oral administration of taurine also ameliorates impairment of vascular reactivity, intimal thickening, arteriosclerosis, endothelial apoptosis, oxidative stress and inflammation, associated primarily with diabetes and, to a lesser extent with obesity, hypertension and nicotine-induced vascular adverse events. In rat aortic vascular smooth muscle cells (VSMCs), taurine acts as an antiproliferative and antioxidant agent. In endothelial cells, taurine inhibits apoptosis, inflammation, oxidative stress and cell death while increasing NO generation. Oral taurine in hypertensive human patients alleviates the symptoms of hypertension and also reverses arterial stiffness and brachial artery reactivity in type 1 diabetic patients. However, despite these favorable findings, there is a need to further establish certain aspects of the reported results and also consider addressing unresolved related issues. In addition, the molecular mechanism (s) involved in the vascular effects of taurine is largely unknown and requires further investigations. Elucidation of the mechanisms through which taurine affects the vasculature could facilitate the development of therapeutic and/or diet-based strategies to reduce the burdens of vascular diseases.

 

Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects.
Amino Acids. 2004 Jun;26(3):267-71.
Zhang M, Bi LF, Fang JH, Su XL, Da GL, Kuwamori T, Kagamimori S.

Taurine has beneficial effects on lipid metabolism in experimental animals fed with high-cholesterol or high fat diets. Whether taurine benefits lipid metabolism in humans has rarely been investigated. The aim of this study was to evaluate the effects of taurine on serum lipids in overweight or obese young adults. Thirty college students (age: 20.3+/-1.7 years) with a body mass index (BMI) >/=25.0 kg/m(2), and with no evidence of diabetes mellitus were selected and assigned to either the taurine group (n=15) or the placebo group (n=15) by double-blind randomization. Taurine 3 g/day or placebo was taken orally for 7 weeks. Triacylglycerol (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and plasma glucose were measured before and after supplementation. The atherogenic index (AI) was calculated as (TC-HDL-C)/HDL-C. There were no differences in any baseline parameter between the two groups. Taurine supplementation decreased TG and AI significantly. Body weight also reduced significantly in the taurine group. These results suggest that taurine produces a beneficial effect on lipid metabolism and may have an important role in cardiovascular disease prevention in overweight or obese subjects.

[Therapy of cardiac arrhythmias. Clinical significance of potassium- and magnesium aspartate in arrhythmias]. [Article in German]
Fortschr Med Orig. 2002;120(1):11-5.
Manz M, Susilo R.

Potassium and magnesium deficiencies usually coexist and represent a risk factor for cardiac arrhythmias. Serum levels–in particular of magnesium–are inconclusive for establishing a possible electrolyte deficiency. Basic treatment of arrhythmia should therefore include the administration of potassium and magnesium, since the benefit is great, and the possible side effects is negligible. A placebo-controlled study involving patients with cardiac arrhythmias revealed that appreciably fewer ventricular asystoles occurred after three weeks of treatment with potassium and magnesium aspartate, even when serum levels were within the normal range prior to initiating treatment. Patients older than 50, and those with previous coronary heart disease and/or myocardial infarction derived particular benefit from this form of treatment. These results underscore the key role played by potassium and magnesium in the treatment of cardiac arrhythmias.

Antiarrhythmic effects of increasing the daily intake of magnesium and potassium in patients with frequent ventricular arrhythmias. Magnesium in Cardiac Arrhythmias (MAGICA) Investigators.
J Am Coll Cardiol. 1997 Apr;29(5):1028-34.
Zehender M, Meinertz T, Faber T, Caspary A, Jeron A, Bremm K, Just H.

OBJECTIVES: This study sought to assess potential antiarrhythmic effects of an increase in the daily oral intake of magnesium and potassium in patients with frequent ventricular arrhythmias.
BACKGROUND: Magnesium and potassium contribute essentially to the electrical stability of the heart. Despite experimental and clinical evidence for the antiarrhythmic properties of the two minerals, controlled data in patients with stable ventricular arrhythmias are lacking.
METHODS: In a randomized, double-blind study, 232 patients with frequent ventricular arrhythmias (> 720 ventricular premature beats [VPBs]/24 h) confirmed at baseline and after 1 week of placebo therapy were subsequently treated over 3 weeks with either 6 mmol of magnesium/12 mmol of potassium-DL-hydrogenaspartate daily or placebo.
RESULTS: Compared with placebo pretreatment, active therapy resulted in a median reduction of VPBs by -17.4% (p = 0.001); the suppression rate was 2.4 times greater than that in patients randomized to 3 weeks of placebo therapy (-7.4%, p = 0.038). The likelihood of a > or = 60% (predefined criterion) or > or = 70% suppression rate (calculated from the placebo-controlled run-in period) was 1.7 (25% vs. 15%, p = 0.044) and 1.5 times greater in the active than in the placebo group (20% vs. 13%, p = 0.085), respectively. No effect of magnesium and potassium administration was observed on the incidence of repetitive and supraventricular arrhythmias and clinical symptoms of the patients.
CONCLUSIONS: To our knowledge, this study is the first to provide controlled data on the antiarrhythmic effect of oral administration of magnesium and potassium salts when directed to patients with frequent and stable ventricular tachyarrhythmias. A 50% increase in the recommended minimum daily dietary intake of the two minerals for 3 weeks results in a moderate but significant antiarrhythmic effect. However, with the given therapeutic regimen, repetitive tachyarrhythmias and patient symptoms remain unchanged.

The associations of levels of serum potassium and magnesium with ventricular premature complexes (the Framingham Heart Study).
Am J Cardiol. 1994 Aug 1;74(3):232-5.
Tsuji H, Venditti FJ Jr, Evans JC, Larson MG, Levy D.

There are conflicting data regarding the impact of serum potassium and magnesium levels on susceptibility to ventricular premature complexes (VPCs) in the clinical setting. The associations of serum potassium and magnesium levels with the prevalence of complex or frequent (> 30/hour, multiform or repetitive) VPCs were examined after adjusting for age, sex, smoking, caffeinated coffee consumption, alcohol consumption, and left ventricular mass in Framingham Offspring Study subjects who were free of clinically apparent heart disease. There were 3,327 eligible subjects (mean age 44 years). Complex or frequent VPCs were present in 183 subjects (5.5%). When age-adjusted prevalences of complex or frequent VPCs were compared among quartiles of serum potassium and magnesium using a trend test, lower potassium (p = 0.002) and lower magnesium (p = 0.010) levels were associated with higher prevalence rates of arrhythmia. In logistic regression analyses that included potassium and magnesium simultaneously, potassium (p = 0.0021) and magnesium (p = 0.0311) levels were inversely associated with the occurrence of complex or frequent VPCs after adjustment for age, sex, smoking, coffee and alcohol consumption, diuretic use, and systolic blood pressure. These associations remained significant after accounting for left ventricular mass. A 1 SD decrement in potassium (0.48 mEq/liter) or magnesium (0.16 mEq/liter) level was associated with a 27% (95% confidence interval 6% to 51%) and a 20% (95% confidence interval 3% to 41%) greater odds of complex or frequent VPCs, respectively. Lower levels of serum potassium and magnesium were concurrently associated with higher prevalence rates of ventricular arrhythmias.