Share |


  • Supports normal activity of the brain and heart
  • Helps regulate blood pressure
  • Protects the heart from cellular damage
  • Maintains the activity of nerves and muscles

View Infosheet Shop Online

DISCUSSION: Taurine helps support cardiovascular function. Magnesium and potassium are minerals that are factors in the maintenance of good health.

NPN (what's this?)Product CodeSizePer CapsuleVegetarian
80027161 AOR0424690 Vegi-Caps500 mgVegetarian
Supplement Facts
Serving Size: 1 Capsule                                    
Magnesium (citrate) 100 mg
Potassium (chloride) 25 mg
Taurine 375 mg
 Non-medicinal ingredients: silicon dioxide. Capsule: hypromellose.

AOR Guarantees: that no ingredients not listed on the label have been added to the product. Contains no wheat, gluten, corn, nuts, peanuts, sesame seeds, sulphites, mustard, dairy, soy, eggs, fish, shellfish or any animal byproduct.

Adult Dosage: Take 1 capsule four times daily with/without food, or as directed by a qualified health care practitioner.

Cautions: None known

Pregnancy/Nursing: Consult a health care practitioner

Pharmaceutical synthesis

Main Indications:

  • Cardiovascular health
  • Brain function

Related Products


The information and product descriptions appearing on this website are for information purposes only, and are not intended to provide or replace medical advice to individuals from a qualified health care professional. Consult with your physician if you have any health concerns, and before initiating any new diet, exercise, supplement, or other lifestyle changes.

Read More ...


Background Information

Magnesium, Potassium, and Taurine Electrolytes
Electrolytes are conductors of electricity, but they are better summarized as substances that dissociate in solution to form ions. Electrolytes, such as magnesium and potassium, have many major functions, including:

1) Impulse transmission activity – electrolytes maintain activity of nerves and muscles.
2) Help regulate water levels in the body. Shifts of fluids are controlled by electrolytes.
3) Help regulate acid-base balance.

Read More


In 1994, a milestone from the Framingham Heart Study was published, linking reduced potassium and magnesium levels to premature ventricular contractions, a form of arrhythmia that can be quite lethal if not controlled properly. The Framingham Heart Study is a giant on-going cohort study that has followed the heart health of thousands of subjects since 1948 in Framingham, Massachusetts.

A subsequent 3-week study on 232 patients experiencing frequent ventricular premature beats were given 50% more magnesium and potassium than the recommended daily intake. A moderate anti-arrhythmic effect was noted. This effect was again shown in another 3 week study, and the treatment was even effective in those who were not deficient in magnesium and potassium. The treatment was most effective for patients over 50 years of age who had previous CAD or MI.

Read More

Market Trends

Most electrolyte supplements are taken in the form of energy drinks, which of course are full of sugar.

Many people supplement with magnesium only without considering the balance that magnesium strikes with potassium and taurine for nerve, muscle and heart health.

AOR Advantage

AOR’s Mag-K-Taurine is an electrolyte formula free of sugars that fill most electrolyte supplements. It provides an important balance of magnesium and potassium for good nerve and muscle contractility along with taurine for maintained heart function.


Abebe W, Mozaffari MS. Role of taurine in the vasculature: an overview of experimental and human studies. Am J Cardiovasc Dis. 2011;1(3):293-311

Manz M, Susilo R. [Therapy of cardiac arrhythmias. Clinical significance of potassium- and magnesium aspartate in arrhythmias]. [Article in German] Fortschr Med Orig. 2002;120(1):11-5. 

Read More


VN:F [1.9.22_1171]

Leave a Reply

You must be logged in to post a comment.


Perinatal taurine exposure affects adult arterial pressure control.
Amino Acids. 2012 Oct 16.
Roysommuti S, Wyss JM.

Taurine is an abundant, free amino acid found in mammalian cells that contributes to many physiologic functions from that of a simple cell osmolyte to a programmer of adult health and disease. Taurine’s contribution extends from conception throughout life, but its most critical exposure period is during perinatal life. In adults, taurine supplementation prevents or alleviates cardiovascular disease and related complications. In contrast, low taurine consumption coincides with increased risk of cardiovascular disease, obesity and type II diabetes. This review focuses on the effects that altered perinatal taurine exposure has on long-term mechanisms that control adult arterial blood pressure and could thereby contribute to arterial hypertension through its ability to program these cardiovascular regulatory mechanisms very early in life. The modifications of these mechanisms can last a lifetime and transfer to the next generation, suggesting that epigenetic mechanisms underlie the changes. The ability of perinatal taurine exposure to influence arterial pressure control mechanisms and hypertension in adult life appears to involve the regulation of growth and development, the central and autonomic nervous system, the renin-angiotensin system, glucose-insulin interaction and changes to heart, blood vessels and kidney function.


Role of taurine in the vasculature: an overview of experimental and human studies.
Am J Cardiovasc Dis. 2011;1(3):293-311
Abebe W, Mozaffari MS.

Taurine is a sulfur-containing amino acid-like endogenous compound found in substantial amounts in mammalian tissues. It exerts a diverse array of biological effects, including cardiovascular regulation, antioxidation, modulation of ion transport, membrane stabilization, osmoregulation, modulation of neurotransmission, bile acid conjugation, hypolipidemia, antiplatelet activity and modulation of fetal development. This brief review summarizes the role of taurine in the vasculature and modulation of blood pressure, based on experimental and human studies. Oral supplementation of taurine induces antihypertensive effects in various animal models of hypertension. These effects of taurine have been shown to be both centrally and peripherally mediated. Consistent with this, taurine produces endothelium-dependent and independent relaxant effects in isolated vascular tissue preparations. Oral administration of taurine also ameliorates impairment of vascular reactivity, intimal thickening, arteriosclerosis, endothelial apoptosis, oxidative stress and inflammation, associated primarily with diabetes and, to a lesser extent with obesity, hypertension and nicotine-induced vascular adverse events. In rat aortic vascular smooth muscle cells (VSMCs), taurine acts as an antiproliferative and antioxidant agent. In endothelial cells, taurine inhibits apoptosis, inflammation, oxidative stress and cell death while increasing NO generation. Oral taurine in hypertensive human patients alleviates the symptoms of hypertension and also reverses arterial stiffness and brachial artery reactivity in type 1 diabetic patients. However, despite these favorable findings, there is a need to further establish certain aspects of the reported results and also consider addressing unresolved related issues. In addition, the molecular mechanism (s) involved in the vascular effects of taurine is largely unknown and requires further investigations. Elucidation of the mechanisms through which taurine affects the vasculature could facilitate the development of therapeutic and/or diet-based strategies to reduce the burdens of vascular diseases.


Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics.
Diab Vasc Dis Res. 2010 Oct;7(4):300-10.
Moloney MA, Casey RG, O’Donnell DH, Fitzgerald P, Thompson C, Bouchier-Hayes DJ.

Type 1 diabetics have a well-recognised risk of accelerated cardiovascular disease. Even in the absence of clinical signs there are detectable abnormalities of conduit vessel function. Our group has previously reported reversal of endothelial dysfunction in diabetics with pravastatin. In young asymptomatic smokers, taurine supplementation has a beneficial impact on macrovascular function, assessed by FMD, and shows an up-regulation of nitric oxide from monocyte-endothelial cell interactions. We hypothesise that taurine supplementation reverses early endothelial abnormalities in young male type 1 diabetics, as assessed by applanation tonometry, brachial artery ultrasound and laser Doppler fluximetry. Asymptomatic, male diabetics (n=9) were scanned prior to treatment and then randomised in a double-blind cross-over fashion to receive either 2 weeks placebo or taurine. Control patients (n=10) underwent a baseline scan. Assessed diabetics had detectable, statistically significant abnormalities when compared with controls, in both arterial stiffness (augmentation index) and brachial artery reactivity (FMD). Both of these parameters were returned to control levels with 2 weeks taurine supplementation. In conclusion, 2 weeks taurine supplementation reverses early, detectable conduit vessel abnormalities in young male diabetics. This may have important implications in the long-term treatment of diabetic patients and their subsequent progression towards atherosclerotic disease.


Potassium magnesium supplementation for four weeks improves small distal artery compliance and reduces blood pressure in patients with essential hypertension.
Clin Exp Hypertens. 2006 Jul;28(5):489-97.
Wu G, Tian H, Han K, Xi Y, Yao Y, Ma A.

It has been postulated that the loss of arterial compliance may precede cardiovascular diseases, and that arterial compliance is an important parameter to consider when evaluating arterial diseases such as essential hypertension (EH) and the effects of antihypertensive treatment. In all, 133 EH patients and 147 healthy subjects were enrolled in this study. Large arterial compliance (C1) and small arterial compliance (C2) were measured by the CVProfilor DO-2020 CardioVascular Profiling System. Thirty-five patients randomly received magnesium potassium supplementation (magnesium, 70.8 mg/d; potassium, 217.2 mg/d) for four weeks, and 32 patients received lacidipin (4 mg/d) as a control. Before and after the four weeks, blood pressure, C1, and C2 were measured. It was found that arterial compliance was significantly lower in EH patients compared with healthy subjects (C1: 12.53 +/- 0.33 vs. 15.63 +/- 0.30 ml/mmHg x 10, p < 0.01;C2: 3.79 +/- 0.17 vs. 5.69 +/- 0.25 ml/mmHg x 100, p < 0.01). On lacidipine, systolic and diastolic BP decreased 13.27 +/- 1.76 mm Hg and 6.33 +/- 1.55 mm Hg, and C1 and C2 compliance values increased 25.05% +/- 4.49% and 34.50% +/- 7.40%, respectively. On K+ and Mg2+ supplementation, systolic and diastolic BP decreased 7.83 +/- 1.87 mm Hg and 3.67 +/- 1.03 mm Hg, and C1 and C2 compliance values increased 12.44% +/- 4.43% and 45.25% +/- 6.67%, respectively. Decreases in systemic vascular resistance (mean arterial pressure divided by cardiac output) by 11.9% and 16.6 % (p < 0.01) were seen between the drug-induced changes, respectively. Both large arterial compliance and small arterial compliance were decreased in essential hypertension patients. In essential hypertension patients, magnesium and potassium supplementation could improve small arterial compliance, while lacidipine improved large arterial compliance significantly.


Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects.
Amino Acids. 2004 Jun;26(3):267-71.
Zhang M, Bi LF, Fang JH, Su XL, Da GL, Kuwamori T, Kagamimori S.

Taurine has beneficial effects on lipid metabolism in experimental animals fed with high-cholesterol or high fat diets. Whether taurine benefits lipid metabolism in humans has rarely been investigated. The aim of this study was to evaluate the effects of taurine on serum lipids in overweight or obese young adults. Thirty college students (age: 20.3+/-1.7 years) with a body mass index (BMI) >/=25.0 kg/m(2), and with no evidence of diabetes mellitus were selected and assigned to either the taurine group (n=15) or the placebo group (n=15) by double-blind randomization. Taurine 3 g/day or placebo was taken orally for 7 weeks. Triacylglycerol (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and plasma glucose were measured before and after supplementation. The atherogenic index (AI) was calculated as (TC-HDL-C)/HDL-C. There were no differences in any baseline parameter between the two groups. Taurine supplementation decreased TG and AI significantly. Body weight also reduced significantly in the taurine group. These results suggest that taurine produces a beneficial effect on lipid metabolism and may have an important role in cardiovascular disease prevention in overweight or obese subjects.


[Therapy of cardiac arrhythmias. Clinical significance of potassium- and magnesium aspartate in arrhythmias]. [Article in German]
Fortschr Med Orig. 2002;120(1):11-5.
Manz M, Susilo R.

Potassium and magnesium deficiencies usually coexist and represent a risk factor for cardiac arrhythmias. Serum levels–in particular of magnesium–are inconclusive for establishing a possible electrolyte deficiency. Basic treatment of arrhythmia should therefore include the administration of potassium and magnesium, since the benefit is great, and the possible side effects is negligible. A placebo-controlled study involving patients with cardiac arrhythmias revealed that appreciably fewer ventricular asystoles occurred after three weeks of treatment with potassium and magnesium aspartate, even when serum levels were within the normal range prior to initiating treatment. Patients older than 50, and those with previous coronary heart disease and/or myocardial infarction derived particular benefit from this form of treatment. These results underscore the key role played by potassium and magnesium in the treatment of cardiac arrhythmias.


Antiarrhythmic effects of increasing the daily intake of magnesium and potassium in patients with frequent ventricular arrhythmias. Magnesium in Cardiac Arrhythmias (MAGICA) Investigators.
J Am Coll Cardiol. 1997 Apr;29(5):1028-34.
Zehender M, Meinertz T, Faber T, Caspary A, Jeron A, Bremm K, Just H.

OBJECTIVES: This study sought to assess potential antiarrhythmic effects of an increase in the daily oral intake of magnesium and potassium in patients with frequent ventricular arrhythmias.
BACKGROUND: Magnesium and potassium contribute essentially to the electrical stability of the heart. Despite experimental and clinical evidence for the antiarrhythmic properties of the two minerals, controlled data in patients with stable ventricular arrhythmias are lacking.
METHODS: In a randomized, double-blind study, 232 patients with frequent ventricular arrhythmias (> 720 ventricular premature beats [VPBs]/24 h) confirmed at baseline and after 1 week of placebo therapy were subsequently treated over 3 weeks with either 6 mmol of magnesium/12 mmol of potassium-DL-hydrogenaspartate daily or placebo.
RESULTS: Compared with placebo pretreatment, active therapy resulted in a median reduction of VPBs by -17.4% (p = 0.001); the suppression rate was 2.4 times greater than that in patients randomized to 3 weeks of placebo therapy (-7.4%, p = 0.038). The likelihood of a > or = 60% (predefined criterion) or > or = 70% suppression rate (calculated from the placebo-controlled run-in period) was 1.7 (25% vs. 15%, p = 0.044) and 1.5 times greater in the active than in the placebo group (20% vs. 13%, p = 0.085), respectively. No effect of magnesium and potassium administration was observed on the incidence of repetitive and supraventricular arrhythmias and clinical symptoms of the patients.
CONCLUSIONS: To our knowledge, this study is the first to provide controlled data on the antiarrhythmic effect of oral administration of magnesium and potassium salts when directed to patients with frequent and stable ventricular tachyarrhythmias. A 50% increase in the recommended minimum daily dietary intake of the two minerals for 3 weeks results in a moderate but significant antiarrhythmic effect. However, with the given therapeutic regimen, repetitive tachyarrhythmias and patient symptoms remain unchanged.


The associations of levels of serum potassium and magnesium with ventricular premature complexes (the Framingham Heart Study).
Am J Cardiol. 1994 Aug 1;74(3):232-5.
Tsuji H, Venditti FJ Jr, Evans JC, Larson MG, Levy D.

There are conflicting data regarding the impact of serum potassium and magnesium levels on susceptibility to ventricular premature complexes (VPCs) in the clinical setting. The associations of serum potassium and magnesium levels with the prevalence of complex or frequent (> 30/hour, multiform or repetitive) VPCs were examined after adjusting for age, sex, smoking, caffeinated coffee consumption, alcohol consumption, and left ventricular mass in Framingham Offspring Study subjects who were free of clinically apparent heart disease. There were 3,327 eligible subjects (mean age 44 years). Complex or frequent VPCs were present in 183 subjects (5.5%). When age-adjusted prevalences of complex or frequent VPCs were compared among quartiles of serum potassium and magnesium using a trend test, lower potassium (p = 0.002) and lower magnesium (p = 0.010) levels were associated with higher prevalence rates of arrhythmia. In logistic regression analyses that included potassium and magnesium simultaneously, potassium (p = 0.0021) and magnesium (p = 0.0311) levels were inversely associated with the occurrence of complex or frequent VPCs after adjustment for age, sex, smoking, coffee and alcohol consumption, diuretic use, and systolic blood pressure. These associations remained significant after accounting for left ventricular mass. A 1 SD decrement in potassium (0.48 mEq/liter) or magnesium (0.16 mEq/liter) level was associated with a 27% (95% confidence interval 6% to 51%) and a 20% (95% confidence interval 3% to 41%) greater odds of complex or frequent VPCs, respectively. Lower levels of serum potassium and magnesium were concurrently associated with higher prevalence rates of ventricular arrhythmias.